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Abstract. Near-surface winds over complex terrain generally feature a large variability at the local scale. Forecasting these

winds requires high-resolution Numerical Weather Prediction (NWP) models, which drastically increases the duration of sim-

ulations and hinders to run them on a routine basis. Nevertheless, downscaling methods can help forecasting such wind flows

at limited numerical cost. In this study, we present a statistical downscaling of WRF wind forecasts over south-eastern France

(including the south-western part of the Alps) from its original 9-km resolution onto a 1-km resolution grid (1-km NWP model5

outputs are used to fit our statistical models). Downscaling is performed using convolutional neural networks (CNNs), which

are the most powerful machine learning tool for processing images or any kind of gridded data, as demonstrated by recent

studies dealing with wind forecasts downscaling. The previous studies mostly focused on testing new model architectures. In

this study, we aimed to extend these works by exploring different output variables and their associated loss function. We found

that there is no one approach that outperforms the others on both the direction and the speed at the same time. Finally, the best10

overall performance is obtained by combining two CNNs, one dedicated to the direction forecast, based on the calculation of

the normalized wind components using a customized mean squared error (MSE) loss function, and the other dedicated to the

speed forecast, based on the calculation of the wind components and using another customized MSE loss function. Local-scale,

topography-related wind features, which were poorly forecast at 9 km, are now well reproduced, both for speed (e.g. acceler-

ation on the ridge, leeward deceleration, sheltering in valleys) and direction (deflection, valley channeling). There is a general15

improvement in the forecast, especially during the nighttime stable stratification period, which is the most difficult period to

forecast. It results that, after downscaling, the wind speed bias and MAE are reduced from -0.55 m·s−1 and 1.02 m·s−1 initially

to -0.01 m·s−1 and 0.69 m·s−1 respectively, while the wind direction MAE is reduced from 25.9o to 15.5o in comparison with

the 9-km resolution forecast.

1 Introduction20

Over complex terrain, topography and near surface processes affect low level winds: slope winds resulting from spatial thermal

differences along sloping terrain; deviation around hills; channeling in valleys; speedup on mountain crests and acceleration

across gaps and passes (Whiteman, 2000). It results that winds generally feature complex structures at the local scale. In

consequence, forecasting these winds requires high-resolution (HR) Numerical Weather Prediction (NWP) models in order
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to represent the complexity of the topography and its local impact on the flow. This can be achieved through dynamical25

downscaling, that is to say by using an HR NWP model on a limited domain forced by a lower-resolution forecast (Schmidli

et al., 2018; de Bode et al., 2021). However, applying such methods over a relatively large domain and for long time periods

drastically increases the duration of simulations and hinders the ability to run them on a routine basis.

Others downscaling methods can help forecasting such wind flows at limited numerical cost. TopoSCALE (Fiddes and

Gruber, 2014) and WindNinja (Wagenbrenner et al., 2016) are two physically-based downscaling schemes which formulate30

physical principles to account for the effect of a high-resolution topography on boundary-layer meteorology. Both provide wind

forecast downscaling (albeit with some limitations) at a limited computational cost compared to NWP models (Fiddes and

Gruber, 2014; Wagenbrenner et al., 2016; Kruyt et al., 2022). The other main downscaling approach is statistical downscaling.

Contrary to physically-based models, such methods take advantage of past observations or HR forecasts, bringing local wind

information, which can help reproducing the local-scale flow structure. Several methods have been applied to weather forecast35

downscaling: generalized additive models for wind components (Salameh et al., 2009), random forests for wind speed (Zamo

et al., 2016), artificial neural networks (ANNs) for wind components (Dupuy et al., 2021a) (see Vannitsem et al. (2021) for a

recent overview).

Over the past decades, ANNs have become one of the most widely used machine learning methods and have transformed

many fields (e.g., image recognition, automatic translation, etc.), including science. Convolutional neural networks (CNNs)40

(LeCun et al., 2015) are a special kind of neural networks designed to extract hierarchical features from grid-like data, making

them the state-of-the-art machine learning techniques for complex image processing like image super-resolution which consists

in generating an HR image from a low-resolution (LR) image (see Yang et al. (2019) and Kulkarni et al. (2022) for an overview).

Therefore, CNNs appear to be a suitable tool to work with geophysical data issued from numerical models in order to extract

spatial features, as well as to perform a downscaling. The atmospheric research community has already taken advantage of45

CNNs ability for diverse applications (see Reichstein et al. (2019) for an overview) including NWP output postprocessing

(Vandal et al., 2018; Lagerquist et al., 2019; Dupuy et al., 2021b), including downscaling (see Leinonen et al. (2021) and

Harris et al. (2022) for two examples on precipitation forecasts), CNNs outperforming other traditional methods in these

studies.

However, studies dealing with statistical downscaling of both wind speed and direction forecast using CNNs are rare. Höhlein50

et al. (2020), Miralles et al. (2022) and Le Toumelin et al. (2023a, b) used a 2D-to-2D architecture producing a downscaled

2D field from LR 2D fields issued from a NWP model. Miralles et al. (2022) used a generative adversarial network (GAN),

designed to produce realistic looking fields while Höhlein et al. (2020) and Le Toumelin et al. (2023a, b) both used a classic

U-Net architecture, although they applied different training approaches: Höhlein et al. (2020) directly trained their model using

HR and LR forecasts while Le Toumelin et al. (2023a, b) first trained their model using HR and LR output from simulations55

of idealized conditions (controlled atmospheric conditions and idealized topographies), and then applied it to their real world

LR forecasts. On the other hand, Dujardin and Lehning (2022) used a 2D-to-point architecture, meaning that their CNN uses

2D fields data to calculate the wind at a single point (the center of the input 2D data). This singular approach derives from

the ground truth data they use, which come from weather stations observations, contrary to the 2D-to-2D approach where
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target data are coming from NWP models. Nevertheless, Dujardin and Lehning (2022) also produced 2D wind fields (on a grid60

with an horizontal resolution as fine as 50 m) by providing their model with input data centered on different locations. It has

to be noted that HR and LR do not refer to the same scales in these studies. Downscaling was performed from 31 km to 9

km (ratio close to 3), from 25 km to 1.1 km (ratio close to 20), from 1.1 km to 50 m (ratio close to 20) and from 1.3 km to

30 m (ratio close to 40) in Höhlein et al. (2020), Miralles et al. (2022) Dujardin and Lehning (2022) and Le Toumelin et al.

(2023a, b), respectively. Moreover, Le Toumelin et al. (2023b) and Miralles et al. (2022) only used topographical information65

as additional predictors to the LR wind forecast while Höhlein et al. (2020) and Dujardin and Lehning (2022) used others

meteorological parameters. Thus, meteorological phenomena that are expected to be reproduced should differ. For instance,

Miralles et al. (2022), Dujardin and Lehning (2022) and Le Toumelin et al. (2023b) report improvements in the representation

of main orographic effects that are not resolved in the larger-scale data, like acceleration on the ridge and sheltering effect.

Moreover, Dujardin and Lehning (2022) noted a more realistic wind deflection while Le Toumelin et al. (2023b), as well as70

Miralles et al. (2022) over the Alps, got only a small impact on the direction from their downscaling.

This study aims to pursue the exploration of new strategies of wind forecast downscaling in line with the works introduced

above. We present a 2D-to-2D statistical downscaling approach with the originality that wind variables are calculated by

different ways, which generates different wind forecasts. We apply this strategy to WRF wind forecasts over south-eastern

France (including the south-western part of the Alps) from their original 9-km horizontal resolution to a 1-km resolution grid75

(section 2). We evaluate the performances of the different high-resolution forecasts and analyze their own advantages and

disadvantages (section 3). Then we present the main conclusions of the study.

2 Methods

2.1 WRF forecasts

The WRF NWP model (Skamarock et al., 2019) was run in a grid-nested mode, with 3 nested domains (Fig. 1): D1 with a80

9-km horizontal resolution (152× 155 grid points, i.e. 1368× 1395 km), covering France and its surroundings (especially to

the south and to the east); D2 with a 3-km resolution (99× 99 grid points, i.e. 297× 297 km); and D3 with a 1-km resolution

(99× 99 grid points, i.e. 99× 99 km), centered on southeastern France. WRF was routinely run in this operational forecast

mode from the 24 December 2020 to the 5 May 2022, for lead times up to 72 hours. We only used simulations for lead times

from 12 to 72 hours (the first 12 hours are considered as the spin-up and are then discarded) resulting in a total of 29036 hourly85

outputs (after removing some dates for which D3 data are missing). More details on the WRF set up can be found in de Bode

et al. (2023).
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Figure 1. Representation of the 3 nested domains of the WRF model.

2.2 Training data

The objective is to downscale the 9-km resolution WRF forecasts (called WRF LR, for low resolution, in the following) towards

a 1-km resolution over an area corresponding to the D3 domain. The 1-km WRF forecast (called WRF HR, for high resolution,90

in the following) is considered as the target used to train the statistical models.

Wind variables as well as many other variables from the WRF LR forecasts are used as predictors for the CNNs: wind

components (u for the eastward component, v for the northward component), wind direction and wind speed; basic meteoro-

logical parameters (2-m temperature and potential temperature, surface pressure and precipitation); short-wave and long-wave

radiation fluxes; stability-related variables (boundary-layer height and friction velocity).95

Moreover, in order to incorporate the geographical context, some HR parameters, called "static" since they do not vary in

the time, such as topography and a land/sea mask are added to the list of predictors. Moreover, following the recommendations

of Dujardin and Lehning (2022), slope and aspect (orientation of the slope) HR fields calculated from the HR topography are

added (see Fig. 2).
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Figure 2. Illustration of static predictors on the D3 domain: (a) topography (in m a.s.l.), (b) orientation of the slope and (c) local slope. The

red rectangle on (a) shows the area of the plots on Figs. 6, 7 and 8. Letters refer to some topographical sites: MV for Mont Ventoux, LM

for Lure mountain, L for Luberon, DV for Durance valley, VP for Valensole plateau, AV for Asse valley, VG for Verdon Gorge and SV for

Sainte-Victoire mountain. The two purple dots indicate the locations of the valley site and crest site depicted on Figs. 9 and 10 respectively.

Finally, we added the new predictors introduced by Dujardin and Lehning (2022), which combine wind and topography100

information, giving insight on wind–topography interactions. More specifically, they calculate a theoretical correction of the

wind components in order to represent the speed modification caused by the exposure/sheltering to the wind, as well as the

deflection caused by the relief. The reader can refer to Dujardin and Lehning (2022) for more details.

2.3 Convolutional Neural Network architecture

The objective of a neural network (NN) is to find a mathematical function linking a list of predictors to a list of predictants105

(considered as the truth). The function is composed of neurons (a linear combination of input variables transformed by a

so-called activation function) interconnected between each other and arranged in layers. Training the NN consists in fitting

its function to produce results as close as possible to the truth (the reader can refer to Goodfellow et al. (2016) for more

explanations).

Convolutional layers can be introduced in NN when dealing with grid-like data in order to take advantage of information110

contained in spatial structures. In these layers, neurons actually correspond to a convolution function which is applied to a

limited part of the grid. NNs using such layers are called convolutional neural networks (CNNs).

In this study, we used a U-Net architecture (Ronneberger et al., 2015), which is a fully convolutional network that generates

images from images. Its name comes from its U-shaped architecture in which convolutional layers are separated first with

pooling layers and then with transposed convolutional layers. The first phase, with pooling layers, reduces the size of images,115

which is known to capture the context of input images. The second phase, with transposed convolutional layers, increases the

size of the contracted images, enabling a precise localization.
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The architecture of the CNN used is described in Fig. 3. Before entering the U-Net, the data follow a two steps process: LR

input data (32× 32 data with a resolution of 9 km centered over the D3 domain) are interpolated on the HR grid (288× 288

data with a resolution of 1 km, which is larger than the D3 domain in order to incorporate information on a larger spatial120

scale) using a bicubic interpolation (the red layer in Fig. 3) in order to reduce grid patterns artefacts in the outputs, then all

the predictors are standardized. We used a padding of 1 in order to produce outputs with the same size as inputs although we

cropped the 288×288 outputs since we only focus on the 99km×99km central area corresponding to the D3 domain. In order

to avoid overfitting, we added a batch normalization (Ioffe and Szegedy, 2015) and a drop out (Srivastava et al., 2014) after

convolutional layers and we introduced an early stopping that stopped the learning when the loss function calculated on an125

independent validation dataset did not improve on 10 successive epochs. The ReLU activation function is applied after each

convolutional layer, except for the final 1 × 1 convolutional layer in order to produce a not bounded regression. The mean

squared error (MSE) is used as loss function. Additional modifications tested are described in the next sections. We used the

PyTorch library of Python for the machine learning developments.

Figure 3. Schematic illustrating the architecture of the CNN used in the study. BN stands for batch normalization. The numbers under the

different computation blocs indicate the dimension of the data at different stages of the network at the output of the corresponding bloc. NI

and NO represent the number of input variables and the number of target variables, respectively. On the output, the orange area represents

the crop (99× 99) from the yellow part (288× 288).
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2.3.1 Choice of target variables130

We are interested in calculating both wind speed and direction. However, the direction may be difficult to calculate directly

because of its cyclic nature. Circular regression tools are generally based on the von Mises distribution (also called circular

normal distribution), but they are challenging to optimize, even if Lang et al. (2020) developed a circular regression tool based

on random forests (Breiman, 2001) which simplifies the optimization process. On the other hand, more classic regression

approaches, for instance based on the estimation of the conditional mean (via the minimization of the mean squared error),135

seem inappropriate since there is no definition of the mean direction calculated directly on a set of direction values. Despite this,

Le Toumelin et al. (2023a) performed a regression calculating directly the direction, which improved their direction forecast,

using a cosine distance as loss function (see section 2.3.2). We tested their approach (model called CNNdir hereafter).

Otherwise, the mean direction can be calculated based on its sine and cosine (or wind components in the case of wind data)

values (Jammalamadaka and SenGupta, 2001). That is why it is more common to calculate the wind components when using140

regression tools (Dupuy et al., 2019, 2021a; Höhlein et al., 2020; Miralles et al., 2022; Dujardin and Lehning, 2022) since they

carry information on both speed and direction. We apply this approach in this study. Therefore, the CNN outputs 2 variables

aiming at representing the u and v wind components (this model is called CNNu,v hereafter).

Nevertheless, for a given error on one or the other of the 2 components, the forecast error on the underlying direction varies

in function of the speed (the lower the speed, the higher the error on the direction) and direction. It results that direction145

errors on lighter winds are artificially less penalized than direction errors on larger winds. Knowing that light winds directions

are difficult to forecast (with a deterministic model) because of their higher spatial and temporal heterogeneity, this strategy

reinforces the difficulty. The normalization of the components by the wind speed, which gives the cosine and sine values of the

direction (noted ũ and ṽ), is a way to equally penalize all wind speed conditions. We thus tried to forecast these variables (this

model is called CNNũ,ṽ) although they do not incorporate any information on the speed which has to be computed in some150

other way.

2.3.2 Loss function

In our case, the MSE loss produces a negative biased speed forecast. Dujardin and Lehning (2022) proposed a loss function,

inspired by the Pinball function which is used to make quantile regressions, in order to produce unbiased wind speed predictions

when they derive from the components (Eq. 1).155

Lspd =
1
N

N∑

i=1

τi

[
(ûi−βiui)

2 + (v̂i−βivi)
2
]

, (1)

βi =
ϵ + ∥U∥i

ϵ + ∥Û∥i

, τi =





τ if ∥Û∥i ≥ ∥U∥i,

1− τ if ∥Û∥i < ∥U∥i.
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with û and v̂ the CNN outputs wind components, ∥U∥ and ∥Û∥ the target and output speed and τ and ϵ two constants. Using

values of τ = 0.3 and ϵ = 4.3 m·s−1 (these values were chosen after numerous tests), we obtained an unbiased forecast (model

called CNNu,v,Lspd ).

In order to get consistent couples of cosine and sine values when calculating the normalized components, that is to say160

ũ2 + ṽ2 = 1, we tested a loss function combining the classic MSE and the absolute distance between unity and the sum of

squared normalized components (Eq. 2):

L2 =
1
N

N∑

i=1

[(
ˆ̃ui− ûi

)2

+
(
ˆ̃vi− v̂i

)2

+ α
[
1−

(
ˆ̃u2

i + ˆ̃v2
i

)]]
, (2)

with α a weight to balance the two penalty terms. In our case, α = 0.2 is the optimal value. For larger values the cosine/sine

values couples were globally more consistent, but at the expense of the direction forecast.165

Finally, as described in the previous section, the CNNdir is trained using its own loss function (Eq. 3), introduced in the study

of Le Toumelin et al. (2023a):

Ldir = 1− 1
N

N∑

i=1

[
cos

(
d̂iri− diri

)]
, (3)

with dir and d̂ir the target and CNN output directions respectively. A summary of the tests performed in this study is given in

Table 1.170

Table 1. Summary of models used for downscaling tests.

Name Output variable(s) Loss function

CNNu,v u and v MSE

CNNu,v,Lspd u and v Lspd

CNNũ,ṽ ũ and ṽ MSE

CNNũ,ṽ,L2 ũ and ṽ L2

CNNdir direction Ldir

2.4 Wind forecast evaluation

The performance was evaluated by comparing the difference between the target (deterministic 1-km WRF simulation) and

the output of the various CNNs. The improvement brought by the CNNs translates as a reduction of the wind field error with

respect to the initial 9-km WRF wind field error. The latter is computed on the difference between the deterministic 1-km
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WRF simulation and the 9-km WRF wind field projected onto the 1-km grid (on the D3 domain) with a bicubic interpolation.175

Therefore, in the following, "WRF LR" stands for the interpolated field of the 9-km WRF forecast.

To evaluate the significance of the results, and considering the relatively small size of our dataset, we performed a k-fold

cross validation in order to use as much data as possible during the training while evaluating the models on a large period. Then,

we bootstrapped the test subset, yielding a distribution for each metric, in order to evaluate their dispersion (Wilks, 2011).

We mostly focused on evaluating the wind speed and direction using classic metrics such as the mean absolute error (MAE)180

and the mean bias error (MBE). Moreover, we compared the accuracy of the wind speed distribution using the earth mover’s

distance, also known as the Wasserstein distance (WD). For the direction distribution, we used a modified version called

circular earth mover’s distance suited to circular variables (Rabin et al., 2008). Finally, we evaluate the wind field spatial

heterogeneity by calculating the standard deviation of the speed and direction fields for each of the 29036 map samples (one

value per sample). For the direction, which is a circular variable, we used the Yamartino (1984) method (Eq. 4):185

σdir = arcsin(ϵ)
[
1 +

(
2√
3
− 1

)
ϵ3

]
, (4)

with

ϵ =
√

1− (s2
a + c2

a); sa =
1
N

N∑

i=1

sin(dir)i; ca =
1
N

N∑

i=1

cos(dir)i

2.5 Computational considerations

It takes only a few seconds to process a lead time of one simulation using one of the CNNs listed in Table 1 on a graphics

processing unit (GPU), which is valuable considering that operational LR forecasts are available several hours ahead whereas

a dynamical downscaling performed with WRF would require hours of computation.190

3 Results and discussion

3.1 Overall performance of the models

A summary of performance for all the downscaling models is given in Fig. 4. All the CNNs reduce the MAE of the direction

and speed, as well as the wind speed bias compared to WRF LR forecasts. However, the bias on the wind components, which is

close to zero in WRF LR, is slightly degraded after the downscaling but remains low for all the CNNs (in the range [−0.05;0.05]195

m·s−1).

Concerning the wind speed, the CNNu,v,Lspd is better than the other CNNs, especially for the correction of the negative bias

which is reduced to -0.01 m·s−1, demonstrating the ability of the Lspd loss function to reduce the bias. However, it has one of

the worst performance among all the CNNs on the direction and the components (largest MAE values), meaning that the speed

improvement occurs at the expense of a degradation of the forecast of the couple of components.200

9

https://doi.org/10.5194/npg-2023-13
Preprint. Discussion started: 22 June 2023
c© Author(s) 2023. CC BY 4.0 License.



0.70 0.75 0.80 0.85 0.90 0.95 1.00
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(a) Wind speed MAE (m s 1)

0.5 0.4 0.3 0.2 0.1 0.0
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(b) Wind speed MBE (m s 1)

16 18 20 22 24 26
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(c) Wind direction MAE (°)

0.65 0.70 0.75 0.80 0.85 0.90
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(d) u-component MAE (m s 1)

0.01 0.00 0.01 0.02 0.03
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(e) u-component MBE (m s 1)

0.7 0.8 0.9 1.0 1.1
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(f) v-component MAE (m s 1)

0.05 0.04 0.03 0.02 0.01 0.00
CNNdir

CNNu, v, 2

CNNu, v

CNNu, v, spd

CNNu, v

WRF LR
(g) v-component MBE (m s 1)

Figure 4. Summary of performance for the different models – (a) wind speed MAE, (b) wind speed MBE, (c) wind direction MAE, (d) u

MAE, (e) u MBE, (f) v MAE and (g) v MBE.

Concerning the direction, all the CNNs greatly improve the performance with respect to the LR forecast, with a reduction

in MAE of the order of 10 degrees. The CNNũ,ṽ,L2 achieves the best performance. We detail the performance of the different

direction forecasts in Fig. 5. On Fig. 5a, we compare the MAEs on the direction according to the wind direction (as computed
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by WRF HR). The point of this figure is not to focus on the evolution of the MAE in function of the direction for a given model

since many factors should be considered (for instance, the MAE is lower for the northwesterly and southeasterly winds because205

of the higher occurrence of high speeds for which the direction is easier to forecast). Instead, we analyze the differences, for a

given direction, between the different models. The CNNũ,ṽ,L2 and CNNũ,ṽ are really close, while the CNNu,v reaches slightly

higher values for southerly winds for unidentified reasons. But above all, the CNNdir behaves singularly, with larger MAE

values for winds coming from the NW and NE quadrants while they are close to the other CNNs for the SW and SE quadrants.

This is related to an under-prediction of northerly winds, as illustrated in Fig. 5b, which could result from an artifact around210

the 0–360o numerical discontinuity in the wind direction. It seems that Le Toumelin et al. (2023a, their Fig. 4e) experienced

the same issue (important under-estimation of the occurrence of northerly winds), possibly with the same consequence on the

MAE on wind direction, which confirms that calculating the direction as a direct output is not appropriate, as already explained

in section 2.3.1. Besides, calculating ũ and ṽ without any constraint on the couple they form leads to important inconsistencies

(ˆ̃u2 + ˆ̃v2 should be equal to 1 but is underestimated most of the time, see Fig. 5c), which are partly corrected when using the215

L2 loss (with more values close to 1), together with a slight improvement of the direction forecast. Finally, the geographical

difference of MAE between the CNNũ,ṽ,L2 and the CNNu,v (Fig. 5d) indicates that the improvement is not homogeneously

spread over the domain, but mainly occurs over regions featuring lighter winds in average, generally corresponding to valleys.

This behavior was expected since the calculation of the normalized components artificially increases the weight of the direction

errors on the lighter winds with respect to the calculation of u and v, as explained in section 2.3.1.220
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Figure 5. (a) MAE on wind direction according to the wind direction from the HR dataset. (b) Polar distributions of the directions computed

by the different models. On (a) and (b), the results of CNNu,v,Lspd are not represented in order to make the figures more readable, and because

its performance on the direction is lower. (c) Distribution of ˆ̃u2 + ˆ̃v2 values for CNNũ,ṽ and CNNũ,ṽ,L2 . (d) Difference of MAE on the wind

direction between CNNũ,ṽ,L2 and CNNu,v (negative values means that CNNũ,ṽ,L2 performs better while positive values means that CNNu,v

performs better).

In conclusion, there is no one CNN that outperforms the others. Compared to the classic approach (CNNu,v), the modifica-

tions improved either the direction or the speed, but not at the same time. Finally, the best overall performance can be obtained

by the combination of CNNu,v,Lspd for the calculation of the speed and CNNũ,ṽ,L2 for the direction. In the following, "CNN"

results refer to such a combination of post-processing results.
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3.2 Wind field characteristics225

Before evaluating the downscaling overall performance, we illustrate the forecast improvement on two selected cases over a

limited area of the D3 domain which is interesting since it encompasses important ridges (e.g. Lure mountain) and steep local

valleys on its northern part and a smoother topography on its southern part, with the wide Durance valley crossing the area from

the north towards the south (see the location of the area in Fig. 2a and its topographical characteristics in Fig. 6). The results

for the two cases are presented in Figs. 7 and 8, respectively. These figures are composed of 6 panels split into two rows. There230

is a classical representation of wind forecasts on the top row (WRF LR (a), WRF HR (b) and CNN (c)) in which the wind is

represented with arrows. The bottom row shows the forecast errors of WRF LR (d) and the CNN (f), as well as the correction of

the CNN with respect to WRF LR (e): the longer the arrows, the larger the error/difference, while the color of arrows represents

the speed error/modification. Therefore, on panels d and f (resp. e), small white arrows indicate a good forecast (resp. a little

modified forecast), whereas long white arrows indicate important errors (resp. important modifications) on direction associated235

to low-speed errors (resp. small modifications). Long red/blue arrows on panels d and f indicate over/under-estimated speeds

associated to, either good direction forecast if the orientation of arrows in the WRF LR (panel a) or CNN (panel c) forecast is

the same (modulo 180°) as in the error of forecast (panels d or f), or bad direction forecast otherwise. The same logic applies

to panel (e) for the correction by the CNN.

5 km

(a) Topograhy LR (m a.g.l.)

5 km

(b) Topograhy HR (m a.g.l.)

5 km

(c) SLOPE HR (°)

0 250 500 750 1000 1250 1500 1750 0 5 10

Figure 6. (a) LR topography after a bicubic interpolation towards the 1-km grid, (b) HR topography and (c) HR slope for the area of Figs. 7

and 8 (see the location of the area in Fig 2a).
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Figure 7. Situation of the 6 January 2021 at 7h UTC (simulation starting at 0h UTC on 5 January 2021, lead time 31h). The area corresponds

to the red rectangle in Fig. 2a. Horizontal wind computed by (a) WRF LR, (b) WRF HR and (c) the CNN. Panels (d) and (f) represent the

errors corresponding to the wind fields represented in (a) and (c), respectively. Panel (e) represents the vector difference between panels (c)

and (a). On panels (d), (e) and (f), the color of the arrows indicates the error/difference in wind speed.
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On Fig. 7, the meteorological situation corresponds to a calm night with a weak synoptic forcing. The HR forecast wind field240

(Fig. 7b) has a high spatial heterogeneity, for both speed and direction, resulting from typical topography-dependent features

under stable stratification such as channeled valley winds and down-slope winds, e.g. in the northern part of the domain, as well

as around less steep hills, e.g. in the southern part of the domain. The LR forecast (Fig. 7a) also features valley and down-slope

winds but in relation to its LR topography (Fig. 6a), that is to say a single wide and flared valley, bending around the only

main ridge resolved on the northwest part of the area. This results in important errors of direction and speed around all the245

unresolved topographical features (Fig. 7d). The CNN output is very different from the LR wind field over the whole area (long

arrows on Fig. 7e), with important speed and/or direction modification. The downscaled wind field (Fig. 7c) appears to be very

close to the HR field, with a good representation of all the topography-dependent features, which is confirmed by the errors

which are generally very low over the whole area (Fig. 7f).

The meteorological situation presented in Fig. 8 corresponds to a Mistral (regional wind) event, characterized by northwest-250

erly winds at the synoptic scale over the area considered. Over the southern part of the domain, the HR wind field (Fig. 8b)

shows a moderate variability with slight deflections and variations in speed around small scale reliefs (acceleration over ridges

and leeward deceleration). The LR forecast (Fig. 8a) does not represent these topographical features since local topography

vanishes at the 9-km resolution. The wind field is therefore very homogeneous, with small direction changes hence an over-

estimation of leeward speeds and an under-estimation windward (Fig. 8d). The CNN only marginally corrects the LR forecast255

over this area (small arrows in Fig. 8e). The deflection around reliefs (Fig. 8c) as well as the leeward deceleration and ridge

acceleration (red arrows windward and blue arrows leeward on Fig. 8e) are only partially represented, resulting in significant

errors remaining after downscaling (Fig. 8f).

Over the northern part of the domain, the HR wind field (Fig. 8b) is much more impacted by the topography (which features

deeper valleys and hills). It results a flow channeling in the narrow valleys, deflections around main hills and a large acceleration260

over the main ridges. The LR wind field (Fig. 8a) presents features constrained by the highest ridge (Lure mountain), which is

still represented even at the 9-km resolution, with a notable deflection around it as well as a deceleration on the leeward side.

However, deflection and acceleration are lower than those in the HR field, which translates as important errors on the speed

over the relief (Fig. 8d). Moreover, topographic effects by small hills and valleys are not represented, which generates large

direction and speed errors (Fig. 8d). The correction brought by the CNN is more important over this area (long arrows on Fig.265

8e) than over the southern area, allowing to correctly represent the topographical features present in the HR wind field.

To summarize, the CNN learned from the HR WRF dataset the wind-topography interaction features occurring under weak

synoptic forcing as well as under strong wind conditions even if, for the latter, the corrections over local and thin topographical

elements are moderate. In the following section, we analyze whether these improvements can be generalized to the whole

period.270

3.3 Wind climatology at specific sites

We begin this wind climatology with the description of results on two sites featuring very different characteristics, a valley site

(Fig. 9) and a crest site (Fig. 10). The location of these sites is indicated in Fig. 2a.
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Figure 8. Same as Fig. 7 (only the scales of the arrows differ) for the situation of the 13 January 2021 at 13h UTC (simulation starting at 0h

UTC on the 11 January 2021, lead time 61h).

The valley site features two different kinds of winds (Fig. 9e). Firstly, there are winds greater than 6 m·s−1 which are mainly

oriented northwesterly and southeasterly, corresponding to Mistral events and cloudy/rainy weather, respectively, the directions275

of which are little dependent on the local topography (important large scale forcing). These winds are well reproduced in the
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Figure 9. Comparison of wind climatology between WRF HR, WRF LR and the CNN on a single grid cell in a valley (cf. purple dot on

Fig. 2a for the exact location). (a) Comparison of wind speed probability density functions. (b) Density scatter plot comparing wind speeds

from the HR and LR forecasts. (c) Same as (b) for the comparison between the HR forecast and the CNN. (d), (e) and (f) Wind roses of the

WRF LR, the WRF HR and the CNN, respectively. The colors on the wind roses represent the wind speed, and the background in the disks

represents the topography within a radius of 15 km around the valley site.

CNN (Fig. 9f), and reasonably well in WRF LR (Fig. 9d), although the northwesterly winds are more dispersed. Moreover, there

is a negative bias on speed associated to these winds in WRF LR (Fig. 9b) which is only marginally corrected by the CNN (Fig.

9c). Secondly, there are west-southwesterly and east-northeasterly winds corresponding to up-valley and down-valley winds,

respectively, which are highly dependent on the local topography. Both WRF LR and the CNN correctly predict the up-valley280

winds. However, WRF LR fails to predict the down-valley winds, which are anti-clockwise rotated of approximately 45o due

to the south-westerly slope of the LR topography at this place (consistent with explanations of the Fig. 7a), contrary to the

CNN which correctly represents them. Therefore, those winds correspond to down-slope winds in both models. Finally, there

is an over-representation of winds lower than 3 m·s−1 in WRF LR which is only marginally corrected by the CNN (Fig. 9a).
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The wind at the crest site features two major orientations, slightly dispersed around the northerly-to-north-easterly and285

southerly directions (Fig. 10e), mainly resulting from large scale flows forcing. The WRF LR wind rose also presents a bi-

modal distribution, but slightly anti-clockwise rotated, and with a higher scatter for the southeasterly winds (Fig. 10d). The

comparison of the probability density functions of WRF LR and WRF HR (Fig. 10a) highlights a large disagreement, with an

over-estimation (resp. under-estimation) of the occurrence of lighter (resp. stronger) winds in WRF LR, which is generalized

to all the directions according to Figs. 10d and 10e. This is consistent with the results depicted in Fig. 8 (under-estimation290

of the ridge acceleration effect). The CNN corrects both the speed and direction (Figs. 10a, c and f). The probability density

functions of the CNN and WRF HR are very close, even for strong speeds (whereas WRF LR is unable to predict any wind

speed over 15 m·s−1 at this site), and the corresponding wind roses look very similar for all directions.
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Figure 10. Same as figure 9 for a crest location.

Based on those results, it seems that some of the conclusions made upon the analysis of Figs. 7 and 8 (better representation

of the ridge acceleration and the channeling in valleys) can be generalized to the whole period. We will now investigate whether295

the results illustrated in Figs. 9 and 10 could be generalized to the other areas of the domain.
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Figure 11. Summary of wind speed metrics averaged over the whole period. Mean absolute error (MAE, a and b), mean bias error (MBE, d

and e) and Wasserstein distance (WD, g and h) for the WRF LR forecast and the CNN, respectively. Panels (c) and (i) show the modification

brought by the CNN with respect to WRF LR (negative values for improvements) on the MAE and WD, respectively. Panel (f) shows the

mean wind speed calculated from the HR forecast.
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Figure 12. Same as Fig. 11 for wind direction metrics and restricted to the MAE (a, b and c) and the WD (d, e and f).

First of all, the mean speed (over the whole period of simulation) from the HR WRF forecast (Fig. 11f) features some

expected patterns related to the topography, such as maxima over the highest topographical elements (ridge acceleration) and

minima in valleys (sheltering). The WRF LR mean speed is generally under-estimated over a large part of the domain (Fig.

11d), resulting to a global MBE of -0.55 m·s−1 (cf. Fig. 4b), with largest negative biases corresponding to crests. Indeed, the300

ridge acceleration (cf. the mean wind speed maxima from WRF HR in Fig. 11f over the Mont Ventoux, the Lure mountain,

the Luberon, . . . ) is under-estimated in WRF LR, resulting to large negative bias values (Fig. 11d). This is consistent with the

results over the crest site depicted in Fig. 10. The CNN is able to reproduce the features of the mean wind speed since the MBE

is low over most of the domain (Fig. 11e), resulting in a global MBE close to zero (cf. Fig. 4b).

In WRF LR, largest MAE values are related to largest topographic features: high mountains for the speed, where the ridge305

acceleration is the most important (Fig. 11a), valleys for the direction, where the channeling cannot be represented without a

fine description of the topography (Fig. 12a). The CNN either reduces or at least does not degrade the MAE over the main

part of the domain (the only exception being on the southwestern corner which corresponds to a pond area) for both the speed

and direction, with larger improvements (in dark blue on Figs. 11c and 12c) corresponding to regions originally featuring the

largest errors in WRF LR.310
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The WD indicates that in WRF LR the wind climatology is the worst either over the crests for the speed (Fig. 11g), resulting

from the large under-estimation of ridge acceleration, or in the valleys for the direction (Fig. 12g), resulting from a lack

of channeling, which is consistent with the MAE results. The improvement in wind direction brought about by the CNN is

translated in a very similar appearance on the MAE (Fig. 12c) or WD (Fig. 12f) field. For the wind speed, there is no similar

consensus between the two metrics: the overall structure of the improvement field resembles each other for the MAE (Fig. 11c)315

and WD (Fig. 11i), but there are local differences, with some spots even reflecting a degradation of the performance evaluated

by the WD, as revealed by a few red cells in Fig. 11i. Note that the corresponding MAEs (Fig. 11c) are not degraded at these

places. Therefore, from a climatological point of view, WRF LR has mostly a direction issue in valleys, and mostly a speed

issue over crests, which is consistent with the results of Figs. 9 and 10, and these shortcomings are well corrected by the CNN.

3.4 Diurnal cycle320

In this section, we examine how the different metrics evolve according to the time elapsed since the launch of the daily

simulations. The results, shown in Fig. 13, represent the average of all the simulations used. Concerning WRF LR, the MAE

exhibits a clear diurnal cycle for both the speed (Fig. 13a) and the direction (Fig. 13c), with higher values during the night.

This can be explained by the fact that under stable nocturnal conditions, flows are highly dependent on the local topography,

resulting in a high spatial heterogeneity (green lines on Figs. 13b and 13d for the speed and direction, respectively). After325

downscaling, the MAE is reduced for all times. The diurnal cycle remains, although its magnitude is reduced due to a greater

improvement during the nighttime when the higher errors were encountered. The nocturnal evolution of the MAE generally

exhibits two maxima, at the evening and morning transitions (even if this effect is smoothed on the graphic due to seasonal

effect), except for the MAE on the direction in WRF LR which slightly increases towards its maxima reached at the morning

transition. Morning and evening transitions are known to be highly difficult periods to forecast, especially for wind parameters330

which can experience a high temporal variability, which could explain these error maxima.

Note that the lower spatial heterogeneity values encountered in WRF LR in comparison with WRF HR, which is consistent

with the results presented on Figs. 7 and 8, were expected since the local topography is not resolved in this simulation. The

CNN increases the spatial heterogeneity in comparison with WRF LR (also consistent with Figs. 7 and 8), but not enough to

reach the values of the HR forecast, demonstrating that the downscaled forecast is still too smooth. A way to improve this issue335

would be to use a GAN, which is a specific kind of CNN designed to produce very realistic fields (see for example Miralles

et al. (2022)).

4 Conclusions

CNNs are becoming the most popular deep learning tool and their specialization for extracting spatial information is well

suited for use in atmospheric sciences. Recent studies demonstrated their ability to downscale wind forecasts. In this study, we340

aimed to move forward in this question by exploring different strategies for downscaling low-level wind forecast using CNNs,

especially regarding the output variables and their associated loss function.
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Figure 13. Evolution of the MAE for the speed (a) and direction (c) for lead times from 12 to 72 hours of the WRF LR forecast (in red) and

the CNN (in blue). On these panels, the solid line represents the median value, the dark area is the 25 to 75 quantile interval and the light

areas are the whiskers, according to the boxplot construction based on the bootstrap distribution, as explained in section 2.4. Panels (b) and

(d) represent the time evolution of the heterogeneity (cf. section 2.4) for the speed and the direction, respectively.

The downscaling was applied on WRF wind forecasts over south-eastern France (including the south-western part of the

Alps) from its original 9-km resolution onto a 1-km resolution grid. The 1-km resolution data used for training consists of a

series of WRF simulations over a 99 km × 99 km domain, launched for each day of a 16-month period.345

Among the approaches tested (i.e. computing the wind components, the normalized components or the wind direction, using

the MSE loss function in its classical version or with specific adaptations), there is no one that outperforms the others for

both the direction and the speed at the same time. Nevertheless, combining two different CNNs, dedicated to the direction or

speed forecast respectively, yields the better overall performance. The best direction forecast is derived from the normalized

components, which we found to be more accurate when the loss function is customized by adding a penalty term designed to350

produce a more physically consistent couple of components. The best speed forecast is derived from the wind components,
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using a modified MSE loss function designed to remove the speed bias, even if the performance on the individual components

is degraded.

In comparison with the initial 9-km resolution forecast, the CNN reduced the wind speed bias from -0.55 m·s−1 to -0.01

m·s−1, the wind speed MAE from 1.02 m·s−1 to 0.69 m·s−1, and the wind direction MAE from 25.9o to 15.5o. Moreover,355

some typical topographical features, poorly represented in the LR forecast, are well reproduced in the downscaled wind fields,

both for speed (ridge acceleration, leeward deceleration, sheltering in valleys) and direction (deflection, valley channeling).

Regarding the diurnal cycle, there is a general improvement in the forecast, especially during the nighttime, stable stratification

period, which is the most difficult to simulate. Finally, the downscaling creates a spatial heterogeneity in the wind fields, but

not as the same level as in the HR forecast. In the future, this issue could be solved by using generative networks, which are360

specifically designed to produce realistic fields, but with the risk of impacting the overall performance.

We will extend this study by evaluating the performance of the method presented in this paper when applying over areas

other than those where the CNNs have been trained. The first tests already performed have shown an improvement over the

initial low-resolution wind fields, although this improvement is much less than that obtained over the area of the present study.
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J. V., Schaeybroeck, B. V., Whan, K., and Ylhaisi, J.: Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues

in a Big Data World, Bulletin of the American Meteorological Society, 102, E681 – E699, https://doi.org/10.1175/BAMS-D-19-0308.1,

2021.440

Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., and Butler, B. W.: Downscaling surface wind predictions from

numerical weather prediction models in complex terrain with WindNinja, Atmospheric Chemistry and Physics, 16, 5229–5241,

https://doi.org/10.5194/acp-16-5229-2016, 2016.

24

https://doi.org/10.5194/npg-2023-13
Preprint. Discussion started: 22 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Whiteman, C. D.: Mountain Meteorology: Fundamentals and Applications, Oxford University Press,

https://doi.org/10.1093/oso/9780195132717.001.0001, 2000.445

Wilks, D.: Chapter 8 - Forecast Verification, in: Statistical Methods in the Atmospheric Sciences, edited by Wilks, D. S., vol. 100 of

International Geophysics, pp. 301 – 394, Academic Press, https://doi.org/10.1016/B978-0-12-385022-5.00008-7, 2011.

Yamartino, R. J.: A Comparison of Several “Single-Pass” Estimators of the Standard Deviation of Wind Direction, Journal of Applied

Meteorology and Climatology, 23, 1362 – 1366, https://doi.org/10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2, 1984.

Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and Liao, Q.: Deep Learning for Single Image Super-Resolution: A Brief Review, IEEE450

Transactions on Multimedia, 21, 3106–3121, https://doi.org/10.1109/TMM.2019.2919431, 2019.

Zamo, M., Bel, L., Mestre, O., and Stein, J.: Improved Gridded Wind Speed Forecasts by Statistical Postprocessing of Numerical Models

with Block Regression, Weather and Forecasting, 31, 1929 – 1945, https://doi.org/10.1175/WAF-D-16-0052.1, 2016.

25

https://doi.org/10.5194/npg-2023-13
Preprint. Discussion started: 22 June 2023
c© Author(s) 2023. CC BY 4.0 License.


